產品參數 | |
---|---|
產品價格 | 電議 |
發(fā)貨期限 | 電議 |
供貨總量 | 電議 |
運費說明 | 電議 |
材質 | 42crmo鋼板 |
規(guī)格 | 2200*9600 |
加工方式 | 激光切割 |
地址 | 山東 |
運輸方式 | 專線物流 |
眾鑫42crmo冷軋耐磨錳鋼板圓鋼金屬材料有限公司(臺州分公司)坐落于經濟技術開發(fā)區(qū)大東鋼管城。優(yōu)越的地理位置和便利的交通給公司的發(fā)展帶來了充分的條件。本公司生產設備精良,工藝先進合理,檢測手段齊全,技術力量雄厚;主營產品 700L汽車大梁板,產品遍布全國各地,在同行業(yè)中名列前茅。產品銷往全國各地,受到廣大用戶的好評。過硬的產品質量,優(yōu)質的售后服務,是我公司不斷的追求!您的滿意是我們永遠的承諾。歡迎新老客戶光臨惠顧!
本試驗在一定切削條件下對42CrMo鋼板進行干切削,研究刀具累計加工1 035 s過程中前后刀面的磨損形貌。試驗結果表明:累計加工時間T從0增加到1 035 s的過程中,刀具前刀面參與切削的區(qū)域亮度增加,磨損區(qū)域增大;當加工時間T為1 035 s時,刀具前刀面磨損明顯,出現(xiàn)顏色較深面磨損區(qū)域、亮度較高的部分刀具涂層材料磨損區(qū)域、磨粒磨損明顯的磨損區(qū)域。加工時間T從0增加到435 s的過程中,刀具后刀面出現(xiàn)明顯的磨損帶,涂層材料磨損帶逐漸增大。加工時間T從435 s增加到1 035 s的過程中,磨損帶緩慢增大,出現(xiàn)基體磨損現(xiàn)象,隨著磨損時間延長,基體磨損逐漸增大。當加工時間T從48 s增加到1 035 s,已加工表面粗糙度Ra由3.46μm逐漸增大到3.91μm。
針對模鑄鍛材42crmo鋼板表面出現(xiàn)裂紋缺陷,通過對鍛材表面裂紋進行試驗分析,結果表明,裂紋表面有平面等軸晶粒的多邊形輪廓形態(tài),具有鍛造開裂后又發(fā)生高溫再結晶的形貌特征,進而推斷出鍛材上的裂紋形成于高溫鍛造變形過程中。
在42CrMo鋼常規(guī)處理的基礎上增加了冷處理,研究淺冷處理和深冷處理對42CrMo鋼硬度和耐磨性的影響。結果表明,經淺冷處理和深冷處理后,42CrMo鋼板中殘留奧氏體向馬氏體發(fā)生轉變,且碳化物析出增多,致使鋼的硬度和耐磨性均有,且深冷處理后硬度和耐磨性幅度高于淺冷處理。
為研究42Cr Mo鋼板的沖擊動態(tài)力學性能及本構模型,進行了沖擊動態(tài)壓縮實驗和金相觀察.材料表現(xiàn)出強烈的應變率依賴性,同時還得到不同應變率下力學性能差異的主要原因在于沖擊動態(tài)載荷下的絕熱剪切行為.采用熱理論,42crmog分別考慮熱應力和非熱應力來解釋變形機理,得到了應變率效應的描述.基于此,本文提出含高應變率效應的動態(tài)本構模型,通過絕熱剪切準則來確定失穩(wěn)的起始點,并與模型進行耦合.該模型能很好地描述42Cr Mo鋼的準靜態(tài)和沖擊動態(tài)力學行為,特別是應變硬化效應和應變率效應.
為了查找某42CrMo鋼板制螺栓斷裂失效的原因,采用光學顯鏡、掃描電鏡、電感耦合等離子體光譜儀、碳硫分析儀、硬度計等對斷裂件的宏觀斷口形貌、顯組織、硬度和化學成分等進行觀察和檢測分析。結果表明:螺栓光桿和法蘭盤轉接圓角處局部過燒和脫碳是引起螺栓斷裂的主要原因,使用過程中螺栓光桿和法蘭盤轉接圓角處的應力集中是導致螺栓斷裂的誘發(fā)因素。通過嚴格控制熱鐓溫度,退火氣氛,增加毛坯的切削余量,可有效防止過燒及脫碳層在成品零件上出現(xiàn),避免類似事件的發(fā)生。
利用ABAQUS有限元分析軟件及二次開發(fā)對42CrMo鋼板船用曲拐加熱和淬火過程進行數值模擬。結果表明:工件分段加熱過程中,表面與心部的 溫差出現(xiàn)在第二個保溫階段,達到88.6℃;第二階段保溫結束時,工件內外基本無溫差,珠光體完全轉變?yōu)閵W氏體。在淬火過程中,曲拐表層形成了一定厚度的馬氏體組織,至半馬氏體處厚度約為70 mm,其表面馬氏體含量的體積分數約為96%;貝氏體主要集中在曲拐的次表層,且其 含量約為56%;曲拐的心部為完全的珠光體組織;殘留奧氏體主要集中在曲拐的表層,且其大含量約為4%。
通過使用光纖激光器,激光熔覆鎳基復合合金粉末在42CrMo鋼表面獲得了成形良好的激光熔覆層。采用掃描電子顯鏡(SEM)、能譜儀(EDS)、X射線衍射(XRD)、顯硬度計和磨損試驗機研究了熔覆層組織形態(tài)、物相、化學成分和顯硬度,并對其磨損性能進行了分析。結果表明,激光鎳基復合熔覆層的物相主要有γ-Ni、M7C3、M23C6、CrB、Fe6W6C、Mo2FeB2和WC。熔覆層組織主要以胞狀晶和胞狀樹枝晶為主,并有大量的共晶組織。42crmo鋼板激光熔覆層的顯硬度分布比較均勻,相對基體硬度提高了1.42倍。激光熔覆層的耐磨性是基體的3倍以上,熔覆層的主要磨損機制為磨粒磨損,并伴隨著粘著磨損和氧化磨損。
基于深冷處理提供的溫度場和永磁體提供的勻強磁場,對42CrMo鋼板合金鋼進行磁場深冷處理,并與常規(guī)工藝和深冷處理工藝進行了對比分析。結果表明:磁冷工藝在深冷處理工藝的基礎上進一步提高了42CrMo鋼的耐磨性,磁冷工藝處理材料的耐磨性較常規(guī)工藝和深冷工藝分別提高約26. 7%和22. 2%。
這是由于深冷處理使得殘留奧氏體進一步轉化為馬氏體;深冷處理也使得過飽和馬氏體析出大量碳生成碳化物;深冷處理中磁場的存在對α-Fe晶格的作用使過飽和馬氏體析出碳的方向得到優(yōu)化,回火屈氏體在磁場方向致密聚集,耐磨性提高。 基于有限元計算分析了直徑為Φ40 mm的42CrMo鋼圓棒試樣分別使用淬火油和PAG水基液淬火后試樣不同位置的組織、硬度以及淬火過程中的溫度變化,采用硬度檢測和顯組織分析對模擬結果進行了驗證。42crmo鋼板結果表明,當使用淬火油淬火時,試樣表面由奧氏體向馬氏體和貝氏體轉變,心部由奧氏體向貝氏體轉變;當使用PAG水基液淬火時,試樣表層幾乎轉變成馬氏體,心部轉變成馬氏體和貝氏體;試樣經淬火油和PAG水基液淬火后,表面硬度分別為58和55 HRC,均由表面至心部硬度逐漸降低,但使用PAG水基液淬火后試樣的心部硬度比用淬火油的高5 HRC,約為50 HRC。
目的提高42CrMo鋼板激光淬火后硬化層的深度和分布均勻性。方法利用COMSOL Multiphysics軟件對42CrMo鋼激光淬火過程中溫度場的演變進行分析,且考慮材料的熱物性參數隨溫度變化。通過設定激光工藝參數模擬試樣的溫度場分布,利用馬氏體轉變條件得到硬化層形貌尺寸。參照模擬結果,利用連續(xù)輸出的光纖耦合半導體激光器對42CrMo鋼進行激光淬火實驗,用熱電偶測溫儀對試樣測溫并與模擬的溫度歷史曲線進行對比,用光學顯鏡對試樣橫截面處硬化層形貌進行分析,將實驗所得硬化層形貌與模擬結果進行比較。并在相同的功率密度下,改變光斑的幾何尺寸進行模擬,分析并比較硬化層的幾何特征。結果實驗所測某點的溫度歷史曲線與模擬結果一致性較高,硬化層實際形貌與模擬結果基本吻合。